A degenerate elliptic system with variable exponents
نویسندگان
چکیده
منابع مشابه
Multiple Positive Solutions for Degenerate Elliptic Equations with Critical Cone Sobolev Exponents on Singular Manifolds
In this article, we show the existence of multiple positive solutions to a class of degenerate elliptic equations involving critical cone Sobolev exponent and sign-changing weight function on singular manifolds with the help of category theory and the Nehari manifold method.
متن کاملON QUASILINEAR ELLIPTIC SYSTEMS INVOLVING MULTIPLE CRITICAL EXPONENTS
In this paper, we consider the existence of a non-trivial weaksolution to a quasilinear elliptic system involving critical Hardyexponents. The main issue of the paper is to understand thebehavior of these Palais-Smale sequences. Indeed, the principaldifficulty here is that there is an asymptotic competition betweenthe energy functional carried by the critical nonlinearities. Thenby the variatio...
متن کاملElliptic Equations with Limiting Sobolev Exponents
where a ( x ) is a given function on M . The original interest in such questions grew out of Yamabe's problem (see [40], [39], [2], [27], [15]) which corresponds to the special case where a ( x ) = ( ( N 2)/4(N l ) ) R ( x ) and R ( x ) is the scalar curvature of M . It turns out that, despite its simple form, equation (1) (or ( 2 ) ) has a very rich structure and provides an amazing source of ...
متن کاملCritical exponents in a doubly degenerate nonlinear parabolic system with inner absorptions
This paper deals with critical exponents for a doubly degenerate nonlinear parabolic system coupled via local sources and with inner absorptions under null Dirichlet boundary conditions in a smooth bounded domain. The author first establishes the comparison principle and local existence theorem for the above problem. Then under appropriate hypotheses, the author proves that the solution either ...
متن کاملQuasilinear Elliptic Equations with Critical Exponents
has no solution if Ω ⊂ R , N ≥ 3, is bounded and starshaped with respect to some point, and 2∗ = 2N/(N − 2). In (P0) the nonlinear term is a power of u with the critical exponent (N + 2)/(N − 2). This terminology comes from the fact that the continuous Sobolev imbeddings H 0 (Ω) ⊂ L(Ω), for p ≤ 2∗ and Ω bounded, are also compact except when p = 2∗. This loss of compactness reflects in that the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Science China Mathematics
سال: 2019
ISSN: 1674-7283,1869-1862
DOI: 10.1007/s11425-018-9409-5